skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Choi, Ryan_T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract High latitude wetlands are ecologically important ecosystems due to their large carbon (C) storage capacity and because they serve as breeding and nesting habitat for large populations of migratory birds. Goose herbivory in wetland meadows affects leaf chemical and morphological traits and also influences soil properties by increasing soil temperature and depositing faeces. Grazing‐induced changes to above‐ground traits and soil properties impact C cycling, but the influence of grazing on root‐mediated C and nitrogen (N) cycling has not been explored.We investigated how goose herbivory in a low‐Arctic coastal wetland in western Alaska affected root morphological, physiological and chemical traits of a dominant graminoid by assessing plant traits in ungrazed versus heavily grazed sedge meadows. We also performed a 11‐week lab‐based root incubation experiment to determine how grazing affects CO2‐C efflux, the size and decay rate of the fast‐cycling C pool (i.e. C with a mean residence time of days to weeks, determined via CO2‐C efflux), and patterns of N mineralization during root decomposition.Goose grazing altered root chemical traits by increasing root N by 7%, cellulose by 12%, and ash content by 17%, indicating that grazing shifted root chemical traits towards a resource‐acquisition strategy. Grazing did not alter root biomass, morphology or bulk C exudation. In our root incubation, soils that included the roots of grazed plants tended to exhibit greater CO2‐C efflux than those containing ungrazed plant roots due to a larger fast‐cycling C pool. Additionally, grazing‐induced increases in soil temperature led to greater CO2‐C efflux due to a faster decay rate of the fast‐cycling C pool. Finally, compared with ungrazed roots, we found that the decomposition of grazed roots resulted in more N being transferred to root necromass from the surrounding soil, suggesting that microbial communities decomposing grazed roots immobilized N.Synthesis. Overall, our results indicate that goose grazing increased C‐cycling rates by influencing soil environmental conditions and by altering the ecological strategy of grazed plants. In contrast, grazing decreased net N mineralization by promoting N immobilization. These results suggest that changing patterns and abundances of herbivores can have substantial effects on elemental cycles. 
    more » « less